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Abstract—The imine Ph2CHN�CHCO2Et, generated from benzhydrylamine and ethyl glyoxylate, is an excellent dienophile in
aza-Diels–Alder reactions, giving diastereomerically pure cycloadducts in high yield. © 2002 Elsevier Science Ltd. All rights
reserved.

The ubiquitous nature of the piperidine ring system in
diverse natural products has ensured that general routes
to this sub-structure have remained an important syn-
thetic goal for many years.1 One particularly powerful
approach is the aza-Diels–Alder reaction,2 especially
when an imino–ester is used as the dienophile (Scheme
1).3–7

We initially developed an achiral version of this reac-
tion using PhCH2N�CHCO2Et 1a, allowing us to estab-
lish general conditions that yield piperidines in 50–90%
yields in a single step.3 We have been able to extend this
chemistry to an asymmetric procedure by using the
1-phenylethyl auxiliary on nitrogen (1b), available in
either enantiomeric form;4,5 this gives moderate asym-
metric induction for 2-substituted dienes (typically 6:1
diastereo-control), but the minor isomer must be
removed chromatographically, and 1-substituted dienes
form cyclo-adducts with poor asymmetric induction.

Excellent asymmetric induction can be achieved if a
second matched auxiliary is introduced into the ester
functionality (2),6 offering a reliable route to enantio-
pure piperidines; however, the imine requires three
steps for its preparation from (−)-pulegone, and only
one enantiomeric series is readily accessible. An
efficient, diastereospecific aza-Diels–Alder approach
would therefore be very attractive, even if it did not
provide enantio-control; optically active cyclo-adducts
should be readily accessible by resolution because the
basic nature of piperidines allows the formation of
diastereomeric salts with chiral acids.

Although the aza-Diels–Alder reaction using the achiral
benzyl imine 1a (PhCH2N�CHCO2Et) provides an
extremely short and effective route to a range of
pipecolic acid derivatives, we had encountered three
problems:

Scheme 1. Aza-Diels–Alder reaction.
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(a) Variable yields, which we eventually attributed to
inconsistency in the purity of the imine
(b) Modest yields (ca. 50%) with 1-substituted dienes
(c) Incomplete diastereo-control with some dienes
(e.g. cis/trans ratio of 1:12 with penta-1,3-diene).

Concerning the purity of the imine, it is essentially
homogeneous and fridge stable for several weeks pro-
vided (i) absolutely pure ethyl glyoxylate is used; (ii) the
glyoxylate:benzylamine ratio is exactly 1:1; (iii) the
resulting imine is stored under dry, solvent-free condi-
tions at 0°C. However, we were often able to identify
by-products due to attack of additional nucleophiles on
the imine (i.e. PhCH2NH–CH(X)–CO2Et). We also
observed the formation of a further by-product during
the aza-Diels–Alder reactions and, by stirring the imine
under the cycloaddition conditions in the absence of the
diene, we obtained sufficient material for its crystallisa-
tion and identification as 4 by X-ray diffraction (see
Fig. 1). This was presumably formed from the interme-
diate betaine 3, as shown in Scheme 2.

We therefore turned our attention to an alternative
achiral imine, and looked at the benzhydryl derivative
1c. This turned out to be readily obtainable as a white,
homogeneous, stable solid by reacting benzhydrylamine
with ethyl glyoxylate under dehydrating conditions.

We found the Roberts’ conditions for generating ethyl
glyoxylate hydrate were very convenient,8 and the ease
with which 1c could be reprecipitated in homogeneous
form overcame all problems of purity. Presumably
because it is a solid (cf. 1a, which is an oil), the
benzhydryl imine 1c is indefinitely stable, being usable
after storage for 6–12 months at 0°C. To our delight, it
behaved as an excellent and reliable dienophile in aza-
Diels–Alder reactions (Scheme 3), and the results are
summarised in Table 1.

Notable is that we used a standard set of conditions, so
yields are not optimised. Nevertheless, a wide range of

Scheme 2. Formation of the imidazolone by-product.

Scheme 3. Reagents and conditions : (i) NaIO4, CH2Cl2/H2O
5:1, reflux, 1 h then cool to 0°C and add MgSO4 (94%); (ii)
Ph2CHNH2 (0.75 equiv.), CH2Cl2, 3 A� MS, rt (94%); (iii)
diene (2 equiv.), TFA (1 equiv.), TFE, −40°C (see Table 1,
and Refs. 13–15 for experimental details and data).

Figure 1. X-Ray crystal structure of 4.9

methylated butadienes all gave the Diels–Alder adducts
in yields of 42–95%. In all cases, the adduct was
relatively easy to purify, as it was usually the highest Rf

component. We observed total control of both regio-
chemistry (o/p products with respect to nitrogen) and
diastereochemistry (the all-cis products resulting from
pseudo endo attack of the imine on the diene). The
1-substituted dienes have in the past given slightly
lower yields (and polar by-products that are probably
polymeric), and small amounts of the ene products 6
were isolated (Scheme 4) in two cases. However, the
key observation is the rapidity and ease with which the
piperidine ring can be constructed using this methodol-
ogy, and with complete regio- and diastereo-control.

In summary, we have shown that the benzhydryl imine
1c (Ph2CHN�CHCO2Et) is a readily prepared, storable
dienophile that reacts with acyclic dienes in high yield
(typically ca. 70%), and with complete regio- and



N
CHPh2

CO2Et

N
CHPh2

CO2Et

N
CHPh2

CO2Et

N
CHPh2

CO2Et

N
CHPh2

CO2Et

Me

Me

Me

Me

Me
Me

Me

Me

1

2

3

4

5

95%

87%

62%  (5%)

42% (6%)

60%

entry              diene                         cycloadduct 5              yielda

N

CO2Et

PhPh

H

Me

R''

NPh

Ph

CO2Et
R''

Me

6

P. D. Bailey et al. / Tetrahedron Letters 43 (2002) 1067–1070 1069

Table 1. Cycloadducts 5 from the aza-Diels–Alder reactions, which were single regio- and diastereo-isomers, as shown

a Isolated yield of 5; yield of acyclic by-product 6 shown in brackets, see Scheme 4.

diastereo-control. It therefore provides a particularly
short and attractive route to substituted piperidines
and, because of the double bond within the ring, is also
amenable to further functionalisation. The application
of this approach to natural product synthesis, and the
indirect stereochemical control conferred by the benz-
hydryl group, is discussed in the following paper.
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